Modular Labelled Sequent Calculi for Abstract Separation Logics
نویسندگان
چکیده
separation logics are a family of extensions of Hoare logic for reasoning about programs that manipulate resources such as memory locations. These logics are “abstract” because they are independent of any particular concrete resource model. Their assertion languages, called propositional abstract separation logics (PASLs), extend the logic of (Boolean) Bunched Implications (BBI) in various ways. In particular, these logics contain the connectives ∗ and −∗ , denoting the composition and extension of resources respectively. This added expressive power comes at a price since the resulting logics are all undecidable. Given their wide applicability, even a semi-decision procedure for these logics is desirable. Although several PASLs and their relationships with BBI are discussed in the literature, the proof theory of, and automated reasoning for, these logics were open problems solved by the conference version of this paper, which developed a modular proof theory for various PASLs using cut-free labelled sequent calculi. This paper non-trivially improves upon this previous work by giving a general framework of calculi on which any new axiom in the logic satisfying a certain form corresponds to an inference rule in our framework, and the completeness proof is generalised to consider such axioms. Our base calculus handles Calcagno et al.’s original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We then show that many important properties in separation logic, such as indivisible unit, disjointness, splittability, and cross-split, can be expressed in our general axiom form. Thus our framework offers inference rules and completeness for these properties for free. Finally, we show how our calculi reduce to calculi with global label substitutions, enabling more efficient implementation. CCS Concepts: • Theory of computation→ Separation logic; Additional
منابع مشابه
ar X iv : 1 30 7 . 55 92 v 4 [ cs . L O ] 2 6 N ov 2 01 3 Proof Search for Propositional Abstract Separation Logics via Labelled Sequents
Abstract separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are “abstract” because they are independent of any particular concrete memory model. Their assertion languages, called propositional abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theo...
متن کاملLabelled Tree Sequents, Tree Hypersequents and Nested (Deep) Sequents
We identify a subclass of labelled sequents called “labelled tree sequents” and show that these are notational variants of tree-hypersequents in the sense that a sequent of one type can be represented naturally as a sequent of the other type. This relationship can be extended to nested (deep) sequents using the relationship between tree-hypersequents and nested (deep) sequents, which we also sh...
متن کاملSequent Calculi for Indexed Epistemic Logics
Indexed epistemic logics constitute a well-structured class of quantified epistemic logics with great expressive power and a well-behaved semantics based on the notion of epistemic transition model. It follows that they generalize term-modal logics. As to proof theory, the only axiomatic system for which we have a completeness theorem is the minimal system Q.Ke, whether with classical or with f...
متن کاملModularisation of Sequent Calculi for Normal and Non-normal Modalities
In this work we explore the connections between (linear) nested sequent calculi and ordinary sequent calculi for normal and non-normal modal logics. By proposing local versions to ordinary sequent rules we obtain linear nested sequent calculi for a number of logics, including to our knowledge the first nested sequent calculi for a large class of simply dependent multimodal logics, and for many ...
متن کاملNested Sequent Calculi and Theorem Proving for Normal Conditional Logics
In this paper we focus on proof methods and theorem proving for normal conditional logics, by describing nested sequent calculi as well as a theorem prover for them. Nested sequent calculi are a useful generalization of ordinary sequent calculi, where sequents are allowed to occur within sequents. Nested sequent calculi have been profitably employed in the area of (multi)-modal logic to obtain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.10805 شماره
صفحات -
تاریخ انتشار 2017